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Abstract 

A series of resampling studies investigated the accuracy of equating by four different methods in 

a random groups equating design with samples of 400, 200, 100, and 50 test takers taking each 

form. Six pairs of forms were constructed. Each pair was constructed by assigning items from an 

existing test taken by 9,000 or more test takers. The criterion equating was the direct 

equipercentile equating in the full group. Accuracy was described in terms of the root-mean-

squared deviation (over 1,000 replications) of the sample equatings from the criterion equating. 

The equating methods investigated were equipercentile equating of smoothed distributions, 

linear equating, mean equating, and circle-arc equating; they were compared with each other and 

with the identity. Circle-arc equating produced the most accurate results for all sample sizes 

investigated, particularly in the upper half of the score distribution. 

Key words: equating, random groups, small samples, circle-arc equating, resampling study  
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What does it mean to say that scores on two forms of a test are accurately equated? 

Angoff (1971, p.563; 1984, p.86) stated that scores on two different forms of a test “... may be 

considered equivalent if their corresponding percentile ranks in any given group are equal.” 

Braun and Holland (1982, p. 15) and Holland and Dorans (2006, p. 202) used essentially the 

same definition, defining equivalence with reference to a particular population of test takers. The 

research we report in this paper is based on that definition of equating. We will consider an 

equating based on samples of test takers as accurate to the extent that it matches the 

equipercentile equating in the population from which those samples were drawn. 

Equating the scores on two different forms of a test requires data collected in a way that 

connects the scores on the two forms. One such data collection plan is the random groups or 

equivalent groups equating design. It consists of administering the two forms of the test to 

nonoverlapping samples of the test-taker population, selecting those samples to be equal (as 

nearly as possible) in the abilities measured by the test. 

The research reported here compares four methods for estimating an equating 

transformation from data collected according to such a plan. In this study, the samples were 

independent, non-overlapping, random samples of equal size. The sample size varied from 50 to 

400 test takers—much smaller than the samples commonly used for equating in a random groups 

design. The four equating methods investigated were  

1. equipercentile equating of smoothed distributions;  

2. linear equating (i.e., setting means and standard deviations equal);  

3. mean equating (i.e., adding or subtracting a constant); and  

4. circle-arc equating. 

The fourth method listed above—circle-arc equating—is new. Like mean equating, it 

estimates the entire equating transformation from a single empirically determined point on the 

equating curve. The curve is constrained to pass through that single empirically determined point 

and two end-points specified without reference to the data. The empirically determined point is 

the intersection of the mean scores on the test forms to be equated. The upper end-point is the 

intersection of the maximum possible scores; the lower end-point of the curve is the intersection 

of the lowest meaningful scores. The equating curve is estimated by decomposing it into a linear 

component and a curvilinear component. The linear component is the line connecting the end-
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points; the curvilinear component is a circle arc. (For a more thorough description of this 

method, including the computation formulas, see Livingston & Kim, 2008, 2009.) 

The equating methods we compared vary systematically in the extent to which they 

substitute assumptions for data. The equipercentile equating method we used was an equating of 

the score distributions produced by the log-linear smoothing method of Holland and Thayer 

(1987), which requires the user to specify the features of the population distributions to estimate 

from the data. We chose to estimate only the mean, standard deviation, and skewness. Linear 

equating assumes that the population distributions to be equated differ only in their means and 

standard deviations. It requires only the population means and standard deviations to be estimated 

from the data. Mean equating assumes that the population distributions to be equated differ only in 

their means; it requires only the population means to be estimated from the data. Circle-arc 

equating also requires only the population means to be estimated from the data, although its 

assumptions cannot be stated simply in terms of the score distributions in the population. 

Some authors have recommended using the identity as the equating transformation 

whenever the available samples of test takers are smaller than a prespecified size (Kolen & 

Brennan, 2004, pp. 289–290; Skaggs, 2005, p. 309). Although the identity is not really an 

equating method, we have included it in our comparisons. Using the identity as a substitute for 

equating makes the strongest assumption of all: that the population distributions of the scores to 

be equated do not differ. It does not require any features of the population distributions to be 

estimated from the data. 

Our search of the literature revealed only two previous studies that investigated the 

accuracy of equating with small samples in a random groups design. Hanson, Zeng, and Colton 

(1994) compared linear equating and equipercentile equatings using several methods of 

smoothing (including no smoothing at all) in samples ranging in size from 100 to 3,000, using 

data from five different tests. No single method was the most accurate for all five tests. For four 

of the five tests investigated, log-linear smoothing that preserved only three moments of the 

observed distributions produced more accurate equating results than smoothings that preserved 

four or more moments.  

Skaggs (2005) compared mean equating, linear equating, and equipercentile equatings 

using various degrees of pre-smoothing (including none at all) in samples ranging in size from 

25 to 200, using data from only one test. Mean equating was the most accurate of the small-
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sample methods for below-average scores, but the least accurate for above-average scores. 

Linear equating was more accurate than equipercentile equating for below-average and near-

average scores, but less accurate for scores more than one standard deviation above the mean. 

Like the studies of Hanson et al. (1994) and Skaggs (2005), the studies we report here 

were resampling studies using real data, not simulated data. Each study consisted of drawing 

repeated samples from a population of test takers, applying the equating procedures, and 

comparing the sample results with a criterion equating.  

Method 

To evaluate the accuracy of an equating based on samples of test takers, it is necessary to 

know the population equating that the sample equating is intended to estimate. We began with 

six existing operational tests. Each of the six tests contained at least 98 items and had been taken 

by 9,000 or more test takers. Using each of these six tests as an item pool, we created two 

nonoverlapping research forms, equal in length (half as long as the operational form or slightly 

shorter) and parallel in content, but unequal in difficulty.  

The test takers who had taken the operational test served as the population for the 

resampling studies. We computed the score of each test taker on each of the two research forms. 

We designated one of the two research forms as the new form and the other as the reference 

form. Using the scores of all the test takers, we performed a direct equipercentile equating of 

scores on the new form to scores on the reference form. This equating was the criterion equating 

for the resampling studies.  

The basic procedure for each resampling study was as follows: 

1. Specify the sample size to be investigated (the same size for each of the forms to be 

equated). 

2. Perform 1,000 replications of the following procedure: 

a. From the test-taker population, draw a simple random sample of the required 

number of test takers. Use an odd-even split to divide this sample into two 

samples of the specified sample size. (Because in simple random sampling each 

individual is selected independently of the others, this procedure yields two 

independent, nonoverlapping random samples.) Designate the first sample as the 

new-form sample and the second as the reference-form sample. 
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b. Equate the new form to the reference form in those samples by each of the 

equating methods to be compared. 

c. At each new-form raw-score level, for each equating method, compute the 

difference between the sample equating and the criterion equating. 

3. At each new-form raw-score level, for each equating method, compute the root mean 

square average of the 1,000 differences computed in Step 2c above. This quantity is 

the root mean squared deviation (RMSD) of the sample equating results from the 

population equating. Also compute the RMSD for the identity, which is simply the 

difference between the identity and the population equating. 

Thus, each resampling study involved a particular pair of test forms to be equated and a 

specified sample size (the same for both samples of test takers). Our investigation included six 

pairs of test forms and four specified sample sizes, for a total of 24 resampling studies. The 

appendix to this report contains a set of five graphs for each of the six pairs of test forms. The 

first graph in each set shows the criterion equating in comparison with the identity. Each of the 

remaining four graphs in the set shows the results of the resampling study at one of the specified 

sample sizes: 400, 200, 100, or 50 test takers for each form. The graph contains five curves, one 

for each small-sample equating method and one for the identity. The height of the curve at any 

given raw-score level shows the RMSD at that score level, expressed in standard-deviation units 

for comparability across the six pairs of test forms.  

In the body of the report, the results of the resampling studies are summarized in four 

graphs, one graph for each specified sample size. For these graphs, the RMSD values were 

computed at specified percentiles of the score distribution and then averaged across the six 

different pairs of test forms. The six RMSD values that were averaged to determine each data 

point were computed at the same percentile of the score distribution and were expressed in 

standard-deviation units. Therefore, it is meaningful to average them across tests given to 

different populations. 

The tests used as item pools for these studies were nationally administered teacher 

certification tests. Table 1 shows, for each test, the subject of the test, the number of items in the 

test, the number of test takers in the population, and the mean and standard deviation of their raw 

(number correct) scores. Table 2 shows a statistical comparison of the two research forms created 

from each of the tests in Table 1, based on the scores of the full population. On three of the six 
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pairs of test forms, the mean scores of the population differed by slightly more than one fourth of a 

standard deviation. On two other pairs of test forms, the mean scores differed by one sixth or one 

seventh of a standard deviation. On one pair of test forms, the mean scores differed by only about 

one twelfth of a standard deviation. The last column of Table 2 shows the largest difference 

between cumulative distribution functions for the two test forms in the full population. (This 

statistic is sometimes called the Kolmogorov D-statistic.) Multiplied by 100, it is the largest 

difference between the two forms in the percentile rank of any given raw score. For example, on 

Test 1, there is at least one raw score for which the percentile rank on the new form is 11 points 

lower than the percentile rank for the same raw score on the reference form. On Test 3, there is no 

raw score for which the difference in percentile ranks is more than three percentile points. 

Table 1 

Tests Used as Item Pools 

Test Subject Number 
of items 

Number of 
test takers 

Mean SD 

1 Social studies: content knowledge 130    9,240  76.38 15.29 
2 Elementary education: content knowledge 120  15,525  80.62 14.41 
3 English language, literature, and 

composition: content knowledge 
120  15,401  90.61 14.28 

4 Speech-language pathology 150  13,054  93.03 13.92 
5 Educational leadership: administration and 

supervision 
117  9,597  82.56 12.30 

6 Fundamental subjects: content knowledge   98  14,407  73.20 11.32 

Table 2  

Test Forms Created From Each Item Pool 

Test Number 
of items in 
each form 

Form X Form Y Standardized 
mean 

difference 

Largest 
difference 

in cdf M SD Skew M SD Skew 

1 62 38.49 7.64 -0.04 36.43 7.93 0.04 0.27 -.11 
2 60 40.96 7.43 -0.37 39.66 7.60 -0.33 0.17 -.07 
3 59 45.35 7.20 -0.60 44.77 7.43 -0.62 0.08 -.03 
4 74 45.82 7.30 -0.35 46.88 7.40 -0.49 -0.14   .07 
5 58 40.31 6.42 -0.55 42.00 6.52 -0.60 -0.26   .13 
6 47 34.44 6.06 -0.49 36.20 5.47 -0.60 -0.30   .12 

Note. cdf = cumulative distribution function. 
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Results 

The findings of our resampling studies are shown in a series of four graphs. Each graph 

shows the RMSD curves for one sample size, computed at nine selected percentiles of the score 

distribution and averaged over the six pairs of forms investigated. The RMSD values are 

expressed in standard deviation units for comparability across the six pairs of forms. The 

averaging process used a root-mean-square procedure, squaring the RMSD values, averaging 

them, and then taking the square root. The percentiles at which the RMSDs were computed were 

based on the distribution of scores on the new form in the full test taker population for that test.  

The vertical scale in the graphs extends from 0.0 to 0.3 standard deviation (SD) units; RMSD 

values of 0.1 and 0.2 SD are indicated by dotted horizontal lines. In some cases, the RMSD 

curves at the lowest and highest percentiles are outside this range. We chose to focus on this 

range because the RMSD values for the identity were all within this range. We considered it 

more important to show a clear comparison of RMSD values within this range than to show how 

far beyond this range the RMSD values for the least accurate methods were. 

Figure 1 shows the RMSD curves for equating in samples of 400 test takers for each 

form. The most obvious result is that with samples of this size, all the equating methods 

produced much more accurate results than using the identity—hardly a surprise, since the test 

forms differed in difficulty. At the 25th and 50th percentiles of the new-form score distribution, 

all the equating methods yielded equally accurate results. Below the 25th percentile, the two 

methods that required estimation of only the population means (mean equating and circle-arc 

equating) outperformed the two methods that required the estimation of more than one parameter 

of each score distribution (linear equating and equipercentile equating with three-moment 

smoothing). Above the 50th percentile, mean equating produced less accurate results than linear 

equating, equipercentile equating produced slightly more accurate results than linear equating, 

and circle-arc equating produced the most accurate results. 

Figure 2 shows the RMSD curves for equating in samples of 200 test takers for each form. 

The RMSD values are larger than those for the samples of 400 test takers, particularly in the 

middle of the score distribution, but the comparisons between equating methods are generally 

similar. The main difference is that, for above-average scores, mean equating performed nearly as 

well as linear equating. Also, at the 90th percentile and above, the advantage of circle-arc equating 
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over linear equating and equipercentile equating was greater with samples of 200 than with 

samples of 400. 
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Figure 1. Root mean squared deviation (RMSD) of small-sample equating methods with 

samples of 400 test takers. 
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Figure 2. Root mean squared deviation (RMSD) of small-sample equating methods with 

samples of 200 test takers. 
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Figure 3 shows the RMSD curves for equating in samples of 100 test takers. The RMSD 

values are large enough to make the equating at the 95th and 99th percentiles less accurate than 

the identity for all the small-sample equating methods except the circle-arc method. The 

comparisons among the four methods are similar to those for the larger samples, although the 

rank ordering of the methods at the 95th and 99th percentiles is different. Also, the difference in 

accuracy between the circle-arc method and the three other methods was greater with the 

samples of 100 than with the larger samples. 

Figure 4 shows the RMSD curves for equating in samples of 50 test takers. With samples 

of this size, the RMSD values for all the equating methods and for the identity are 0.2 SD or 

larger throughout the lower half of the score distribution. At the 50th percentile, all four equating 

methods performed similarly. Below the 50th percentile, mean equating and circle-arc equating 

were much more accurate than the linear and equipercentile equating methods. Above the 50th 

percentile, the circle-arc method was much more accurate than any of the other equating 

methods. The circle-arc method was the only method that produced more accurate results than 

the identity throughout the score distribution. 
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Figure 3. Root mean squared deviation (RMSD) of small-sample equating methods with 

samples of 100 test takers. 
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Figure 4. Root mean squared deviation (RMSD) of small-sample equating methods with 

samples of 50 test takers. 

Discussion 

In this investigation of four methods for equating in a random groups design, the circle-

arc method produced the most accurate results. The smaller the sample, the greater its advantage 

in accuracy over the other methods. It was particularly accurate for equating at high score levels. 

All four methods were about equally accurate at the 50th percentile. As the scores increased 

beyond the 75th percentile, the difference in accuracy between the circle-arc method and the 

three other methods became larger. For low scores— at the 25th percentile and below—both 

circle-arc equating and mean equating produced more accurate results than the other methods, 

particularly for samples of 200 or fewer test takers. 

The success of the circle-arc method appears to be attributable to two features. First, it 

requires the estimation of only a single point on the equating curve, i.e., the intersection of the 

mean scores on the new form and reference form. Second, it equates the maximum possible 

score on the new form to the maximum possible score on the reference form by specifying the 

intersection of those two scores as the upper end-point of the equating curve. The first feature  
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enables the method to work well with limited amounts of data. The second feature results in an 

estimated equating curve that resembles the curves typically produced by equipercentile 

equating. 

Mean equating performed well for average and below-average scores, but not for high 

scores. This result is consistent with the results reported by Skaggs (2005). The main limitation 

of mean equating seems to be its inability to model a curvilinear equating relationship. When test 

forms differ in difficulty, their distributions in a population tend to be unequally skewed. The 

easier form tends to disperse the weaker test takers more widely through the lower and middle 

parts of the score range while bunching the stronger test takers more closely together in the 

higher parts of the score range. The harder form has the opposite effect. The difference in the 

shape of the distributions leads to a curvilinear equating relationship. 

Linear equating and equipercentile equating both performed poorly for scores below the 

25th percentile and for scores above the 90th percentile, especially with samples of 200 or fewer 

test takers. The problem with equipercentile equating is that the percentile ranks of scores in 

those regions are not accurately estimated in small samples. Linear equating appears to have two 

limitations: it cannot estimate a curvilinear relationship, and the slope of the conversion often is 

not estimated accurately when the samples are small.  

The use of the identity would not have been a good substitute for equating the test forms 

constructed for these studies. In constructing those test forms, we deliberately made the new 

form and reference form unequal in difficulty; otherwise, no equating would be necessary. In 

practice, if test forms can be assembled from items for which highly accurate difficulty estimates 

are available, it may be possible to make the forms so nearly equal in difficulty at all ability 

levels that no equating is necessary. In that case, the use of the identity would be preferable to 

equating the scores on the basis of small-sample data. For the forms created for these studies, the 

use of the identity compared favorably with linear equating and equipercentile equating when the 

equating samples included only 50 test takers. But even with samples of that size in a random 

groups equating design, mean equating was more accurate than the identity for all percentiles 

below the 75th, and circle-arc equating was more accurate than the identity throughout the entire 

score range. 

The circle-arc equating method used in this study is the method identified in Livingston 

& Kim (2008) as “Circle-Arc Method 2.” This method, applied to population data, is not truly an 
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equating method, because it is not symmetric. There is another version of the circle-arc method, 

identified in Livingston & Kim (2008) as “Circle-Arc Method 1,” which is symmetric. Applied 

to the data in these studies, Method 1 produced results very close to those of Method 2. 

However, circle-arc equating is not intended as an alternative way to define the equating 

transformation. Its purpose is to estimate the equipercentile equating function in the population 

(which is a symmetric function) on the basis of data from small samples of test takers. How large 

do the samples in a random groups equating design have to be for equipercentile equating (with 

smoothing of the score distributions) to outperform circle-arc equating? To answer that question 

would require another set of studies like these, with larger samples. In these studies, with 

samples of 50 to 400 test takers, circle-arc equating provided a better estimate than could be 

obtained by equipercentile equating of smoothed score distributions, or by linear equating, or by 

mean equating, or by the use of the identity as a substitute for equating. 
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Figure A1. Criterion equating for Test 1. 
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Figure A2. Conditional root mean squared deviation: samples of 400, Test 1. 
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Figure A3. Conditional root mean squared deviation: samples of 200, Test 1. 
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Figure A4. Conditional root mean squared deviation: samples of 100, Test 1. 
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Figure A5. Conditional root mean squared deviation: samples of 50, Test 1. 
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Figure A6. Criterion equating for Test 2. 



17 

 

Equipercentile
Linear
Mean
Circle Arc
Identity

R
M
S
D
 
(
S
D
 
U
n
i
t
s
)

0.0

0.1

0.2

0.3

1st 10th 25th 50th 75th 90th 99th

Raw Score on X  (N = 400)

20 30 40 50 60

 

Figure A7. Conditional root mean squared deviation: samples of 400, Test 2. 
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Figure A8. Conditional root mean squared deviation: samples of 200, Test 2. 
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Figure A9. Conditional root mean squared deviation: samples of 100, Test 2. 
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Figure A10. Conditional root mean squared deviation: samples of 50, Test 2. 
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Figure A11. Criterion equating for Test 3. 
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Figure A12. Conditional root mean squared deviation: samples of 400, Test 3. 
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Figure A13. Conditional root mean squared deviation: samples of 200, Test 3. 
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Figure A14. Conditional root mean squared deviation: samples of 100, Test 3. 
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Figure A15. Conditional root mean squared deviation: samples of 50, Test 3. 
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Figure A16. Criterion equating for Test 4. 
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Figure A17. Conditional root mean squared deviation: samples of 400, Test 4. 
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Figure A18. Conditional root mean squared deviation: samples of 200, Test 4. 
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Figure A19. Conditional root mean squared deviation: samples of 100, Test 4. 
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Figure A20. Conditional root mean squared deviation: samples of 50, Test 4. 
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Figure A21. Criterion equating for Test 5. 
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Figure A22. Conditional root mean squared deviation: samples of 400, Test 5. 
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Figure A23. Conditional root mean squared deviation: samples of 200, Test 5. 
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Figure A24. Conditional root mean squared deviation: samples of 100, Test 5. 
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Figure A25. Conditional root mean squared deviation: samples of 50, Test 5. 
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Figure A26. Criterion equating for Test 6. 



29 

 

Equipercentile
Linear
Mean
Circle Arc
Identity

R
M
S
D
 
(
S
D
 
U
n
i
t
s
)

0.0

0.1

0.2

0.3

1st 10th 25th 50th 75th 90th 99th

Raw Score on X  (N = 400)

10 20 30 40 50

 

Figure A27. Conditional root mean squared deviation: samples of 400, Test 6. 
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Figure A28. Conditional root mean squared deviation: samples of 200, Test 6. 
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Figure A29. Conditional root mean squared deviation: samples of 100, Test 6. 
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Figure A30. Conditional root mean squared deviation: samples of 50, Test 6. 




